Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell Rep ; 41(1): 111441, 2022 10 04.
Article in English | MEDLINE | ID: covidwho-2031186

ABSTRACT

Biologically active small molecules can impart modulatory effects, in some cases providing extended long-term memory. In a screen of biologically active small molecules for regulators of tumor necrosis factor (TNF) induction, we identify several compounds with the ability to induce training effects on human macrophages. Rutaecarpine shows acute and long-term modulation, enhancing lipopolysaccharide (LPS)-induced pro-inflammatory cytokine secretion and relieving LPS tolerance in human macrophages. Rutaecarpine inhibits ß-glucan-induced H3K4Me3 marks at the promoters of several pro-inflammatory cytokines, highlighting the potential of this molecule to modulate chromosomal topology. Syk kinase inhibitor (SYKi IV), another screen hit, promotes an enhanced response to LPS similar to that previously reported for ß-glucan-induced training. Macrophages trained with SYKi IV show a high degree of resistance to influenza A, multiple variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and OC43 coronavirus infection, highlighting a potential application of this molecule and other SYKis as prophylactic treatments for viral susceptibility.


Subject(s)
COVID-19 Drug Treatment , beta-Glucans , Cytokines , Humans , Indole Alkaloids , Lipopolysaccharides , Macrophages , Quinazolinones , SARS-CoV-2 , Syk Kinase , Tumor Necrosis Factor-alpha
2.
PLoS One ; 17(9): e0273715, 2022.
Article in English | MEDLINE | ID: covidwho-2021939

ABSTRACT

Alcohol use disorder is a medical condition that impacts millions of individuals worldwide. Although there are a few pharmacotherapeutic options for alcohol-dependent individuals; there is a need for the development of novel and more effective therapeutic approaches. Alcohol and nicotine are commonly co-abused, and there is evidence that neuronal nicotinic acetylcholine receptors (nAChRs) play a role in both alcohol and nicotine dependence. Desformylflustrabromine (dFBr), a positive allosteric modulator of the α4ß2 nAChRs has been shown to reduce nicotine intake, compulsive-like behavior and neuropathic pain in animal models. dFBr has also been previously shown to cross the blood-brain-barrier. We have recently shown that dFBr can attenuate the response to an acute, hypnotic dose of ethanol, via ß2 nAchR. Here, we have investigated the effect of dFBr in modulating ethanol consumption using the intermittent access two-bottle choice (IA2BC) model of voluntary ethanol consumption in male and female Sprague Dawley rats. We show that dFBr selectively reduced ethanol but not sucrose consumption in the IA2BC model. Furthermore, dFBr decreased preference for ethanol in both male and female rats. No rebound increase in ethanol intake was observed after the washout period after dFBr treatment. The ability of dFBr to decrease ethanol consumption, along with its previously demonstrated ability to decrease nicotine self-administration in rodents, suggest that dFBr is an attractive therapeutic candidate to target both nicotine and alcohol abuse.


Subject(s)
Nicotine , Receptors, Nicotinic , Animals , Ethanol , Female , Hydrocarbons, Brominated , Indole Alkaloids , Male , Nicotine/pharmacology , Rats , Rats, Sprague-Dawley
3.
J Mol Model ; 28(6): 144, 2022 May 11.
Article in English | MEDLINE | ID: covidwho-1838345

ABSTRACT

COVID-19 has recently grown to be pandemic all around the world. Therefore, efforts to find effective drugs for the treatment of COVID-19 are needed to improve humans' life quality and survival. Since the main protease (Mpro) of SARS-CoV-2 plays a crucial role in viral replication and transcription, the inhibition of this enzyme could be a promising and challenging therapeutic target to fight COVID-19. The present study aims to identify alkaloid compounds as new potential inhibitors for SARS-CoV-2 Mpro by the hybrid modeling analyses. The docking-based virtual screening method assessed a collection of alkaloids extracted from over 500 medicinal plants and sponges. In order to validate the docking process, classical molecular dynamic simulations were applied on selected ligands, and the calculation of binding free energy was performed. Based on the proper interactions with the active site of the SARS-CoV-2 Mpro, low binding energy, few side effects, and the availability in the medicinal market, two indole alkaloids were found to be potential lead compounds that may serve as therapeutic options to treat COVID-19. This study paves the way for developing natural alkaloids as stronger potent antiviral agents against the SARS-CoV-2.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Alkaloids/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Indole Alkaloids , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2
4.
Mar Drugs ; 20(3)2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1725847

ABSTRACT

The COVID-19 pandemic and its continuing emerging variants emphasize the need to discover appropriate treatment, where vaccines alone have failed to show complete protection against the new variants of the virus. Therefore, treatment of the infected cases is critical. This paper discusses the bio-guided isolation of three indole diketopiperazine alkaloids, neoechinulin A (1), echinulin (2), and eurocristatine (3), from the Red Sea-derived Aspergillus fumigatus MR2012. Neoechinulin A (1) exhibited a potent inhibitory effect against SARS-CoV-2 Mpro with IC50 value of 0.47 µM, which is comparable to the reference standard GC376. Despite the structural similarity between the three compounds, only 1 showed a promising effect. The mechanism of inhibition is discussed in light of a series of extensive molecular docking, classical and steered molecular dynamics simulation experiments. This paper sheds light on indole diketopiperazine alkaloids as a potential structural motif against SARS-CoV-2 Mpro. Additionally, it highlights the potential of different molecular docking and molecular dynamics simulation approaches in the discrimination between active and inactive structurally related Mpro inhibitors.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemistry , Indole Alkaloids/chemistry , Piperazines/chemistry , SARS-CoV-2/enzymology , Alkaloids/chemistry , Alkaloids/isolation & purification , Antiviral Agents/isolation & purification , Aspergillus fumigatus/chemistry , Cysteine Proteinase Inhibitors/isolation & purification , Indole Alkaloids/isolation & purification , Molecular Docking Simulation , Molecular Dynamics Simulation , Piperazines/isolation & purification
5.
Molecules ; 26(12)2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1282541

ABSTRACT

Alkaloids are a group of secondary metabolites that have been widely studied for the discovery of new drugs due to their properties on the central nervous system and their anti-inflammatory, antioxidant and anti-cancer activities. Molecular docking was performed for 10 indole alkaloids identified in the ethanol extract of Tabernaemontana cymosa Jacq. with 951 human targets involved in different diseases. The results were analyzed through the KEGG and STRING databases, finding the most relevant physiological associations for alkaloids. The molecule 5-oxocoronaridine proved to be the most active molecule against human proteins (binding energy affinity average = -9.2 kcal/mol) and the analysis of the interactions between the affected proteins pointed to the PI3K/ Akt/mTOR signaling pathway as the main target. The above indicates that indole alkaloids from T. cymosa constitute a promising source for the search and development of new treatments against different types of cancer.


Subject(s)
Indole Alkaloids/pharmacology , Plant Extracts/pharmacology , Tabernaemontana/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Humans , Molecular Docking Simulation , Signal Transduction/drug effects
6.
Biomed Res Int ; 2020: 5324560, 2020.
Article in English | MEDLINE | ID: covidwho-822948

ABSTRACT

The ongoing global pandemic caused by the human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions of people and claimed hundreds of thousands of lives. The absence of approved therapeutics to combat this disease threatens the health of all persons on earth and could cause catastrophic damage to society. New drugs are therefore urgently required to bring relief to people everywhere. In addition to repurposing existing drugs, natural products provide an interesting alternative due to their widespread use in all cultures of the world. In this study, alkaloids from Cryptolepis sanguinolenta have been investigated for their ability to inhibit two of the main proteins in SARS-CoV-2, the main protease and the RNA-dependent RNA polymerase, using in silico methods. Molecular docking was used to assess binding potential of the alkaloids to the viral proteins whereas molecular dynamics was used to evaluate stability of the binding event. The results of the study indicate that all 13 alkaloids bind strongly to the main protease and RNA-dependent RNA polymerase with binding energies ranging from -6.7 to -10.6 kcal/mol. In particular, cryptomisrine, cryptospirolepine, cryptoquindoline, and biscryptolepine exhibited very strong inhibitory potential towards both proteins. Results from the molecular dynamics study revealed that a stable protein-ligand complex is formed upon binding. Alkaloids from Cryptolepis sanguinolenta therefore represent a promising class of compounds that could serve as lead compounds in the search for a cure for the corona virus disease.


Subject(s)
Alkaloids/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Cryptolepis/chemistry , Pneumonia, Viral/drug therapy , Viral Proteins/antagonists & inhibitors , Alkaloids/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/enzymology , COVID-19 , Computer Simulation , Coronavirus 3C Proteases , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Cysteine Endopeptidases , Drug Evaluation, Preclinical , Humans , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/virology , Quantitative Structure-Activity Relationship , Quinolines/chemistry , Quinolines/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2 , Viral Nonstructural Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL